4 research outputs found

    Role of structure of the Pp/magnetite nanocomposites on their thermal properties

    Get PDF
    The thermal degradation behaviour of polypropylene and its magnetite composites have been investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Distribution of magnetite nanoparticles in a polymer matrix has been studied by scanning and transmission electron microscopy and also atomic force microscopy. The thermal and mechanical properties of nanocomposites based on polypropylene and magnetite nanoparticles have also been investigated. It has shown that, the introduction of Fe3O4 nanoparticles in polypropylene increases its thermal stability of about 1000C. The maximum increase in the thermal stability of PP was observed in the case of a 20% weight content of Fe3O4 nanoparticles in polypropylene

    Synthesis of Fe/Ni Bimetallic Nanoparticles and Application to the Catalytic Removal of Nitrates from Water

    No full text
    This work investigated the effectiveness of zerovalent iron and Fe/Ni bimetallic nanoparticles in the treatment of water polluted by a high concentration of nitrates. Nanoparticle synthesis was carried out by a sodium borohydride reduction method in the presence of sodium oleate as a surfactant. The particles were characterized by XRD and SEM. Batch experiments were conducted on water samples contaminated by 300 mg L−1 of nitrate. The parameters investigated were the Fe/Ni dosage (0.05, 0.1, 0.2, 0.3, and 0.4 g L−1) and the reaction pH (unbuffered; buffered at pH = 3; initial pH = 3, 5, and 10). The results showed that almost complete nitrate removal (>99.8%) was always achieved after 15 min at a concentration of bimetallic nanoparticles higher than 0.2 g L−1. The optimization of bimetallic nanoparticle dosage was carried out at a fixed pH. Kinetic study tests were then performed at different temperatures to assess the effect of temperature on the nitrate removal rate. By fixing the pH at acidic values and with an operating temperature of 303 K, nitrates were completely removed after 1 min of treatment

    Effect of nano-magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites

    No full text
    Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications, like electromagnetic interference suppression or strain sensing applications in the structural health monitoring domain. In this work, polymer nanocomposites of polypropylene loaded with varying concentrations of magnetite nanoparticles (from 2 to 40 wt%) have been synthesized by an ex situ process. The magnetite nanoparticles were produced using a simple co-precipitation technique. The nanocomposites were characterized by differential scanning calorimetry, scanning electron microscopy, tensile and hardness testing, vibrating sample magnetometry. The mechanical properties were found to be dependent on the degree of dispersion and on the strong nucleating ability of magnetite nanoparticles, while a superparamagnetic behavior was reported. These composites have tailorable mechanical and magnetic properties highly dependent on the content of magnetic filler
    corecore